Probabilistic Satisfiability and Coherence Checking through Integer Programming

نویسندگان

  • Fábio Gagliardi Cozman
  • Lucas Fargoni di Ianni
چکیده

This paper presents algorithms based on integer programming, both for probabilistic satisfiability and coherence checking. That is, we consider probabilistic assessments for both standard probability measures (Kolmogorovian setup) and full conditional measures (de Finettian coherence setup), and in both cases verify satisfiability/coherence using integer programming. We present empirical evaluation of our method, with evidence of phase-transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Efficient Satisfiability Checking for Boolean Algebra with Presburger Arithmetic

Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that combines 1) Boolean algebra of sets of uninterpreted elements (BA) and 2) Presburger arithmetic (PA). BAPA can express relationships between integer variables and cardinalities of unbounded sets. In combination with other decision procedures and theorem provers, BAPA is useful for automatically verifying quantitative pr...

متن کامل

Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems (extended version)

We present an alternative approach to solve the hardware (HW) and software (SW) partitioning problem, which uses Bounded Model Checking (BMC) based on Satisfiability Modulo Theories (SMT) in conjunction with a multi-core support using Open Multi-Processing. The multi-core SMT-based BMC approach allows initializing many verification instances based on processors cores numbers available to the mo...

متن کامل

A Simple Probabilistic Extension of Modal Mu-calculus

Probabilistic systems are an important theme in AI domain. As the specification language, PCTL is the most frequently used logic for reasoning about probabilistic properties. In this paper, we present a natural and succinct probabilistic extension of μ-calculus, another prominent logic in the concurrency theory. We study the relationship with PCTL. Surprisingly, the expressiveness is highly ort...

متن کامل

Generalized Craig Interpolation for Stochastic Boolean Satisfiability Problems

The stochastic Boolean satisfiability (SSAT) problem has been introduced by Papadimitriou in 1985 when adding a probabilistic model of uncertainty to propositional satisfiability through randomized quantification. SSAT has many applications, among them bounded model checking (BMC) of symbolically represented Markov decision processes. This paper identifies a notion of Craig interpolant for the ...

متن کامل

Generalized Craig Interpolation for Stochastic Boolean Satisfiability Problems with Applications to Probabilistic State Reachability and Region Stability

The stochastic Boolean satisfiability (SSAT) problem has been introduced by Papadimitriou in 1985 when adding a probabilistic model of uncertainty to propositional satisfiability through randomized quantification. SSAT has many applications, among them probabilistic bounded model checking (PBMC) of symbolically represented Markov decision processes. This article identifies a notion of Craig int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013